SUSY and Cold Dark Matter in ATLAS

Frank E. Paige, Brookhaven National Laboratory

Non-baryonic cold dark is well established; WMAP fit gives

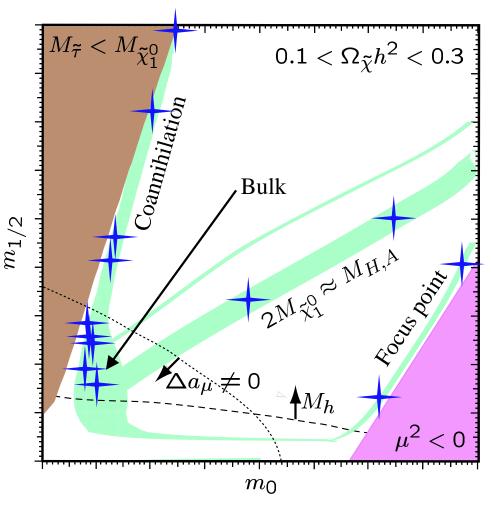
$$h = 0.72 \pm 0.05$$
, $\Omega_b h^2 = 0.024 \pm 0.001$, $\Omega_m h^2 = 0.14 \pm 0.02$.

SUSY with R parity, $R = (-1)^{3B-3L+2S}$, provides $\tilde{\chi}_1^0$ as natural candidate.

 $\Omega_{\tilde{\chi}}h^2$ calculated in mSUGRA by several groups. But SUSY breaking not understood; should not assume mSUGRA. Ωh^2 depends mainly on

- Mass of LSP $\tilde{\chi}_1^0$;
- Mass splitting between $\tilde{\chi}_1^0$ and, e.g., $\tilde{\tau}$;
- Composition of $\tilde{\chi}_1^0$, i.e., mixture of $\tilde{\gamma}, \tilde{Z}, \tilde{H}_1, \tilde{H}_2$.

Will concentrate for now on $\tilde{\chi}_1^0$ mass measurement in ATLAS. Other issues important but need development of new techniques.


Use mSUGRA (no scales!) as guide. Several regions give right cold dark matter:

Bulk: bino $\tilde{\chi}_1^0$, light $\tilde{\ell}_R$ enhance annihilation.

Coannihilation: Light $\tilde{\tau}_1$ in equilibrium with $\tilde{\chi}_1^0$, giving $\tilde{\chi}_1^0 \tilde{\tau}_1 \rightarrow \gamma \tau$.

Focus point: Small μ^2 , so Higgsino $\tilde{\chi}_1^0$. Small FCNC.

Higgs funnel: H,A poles enhance annihilation.

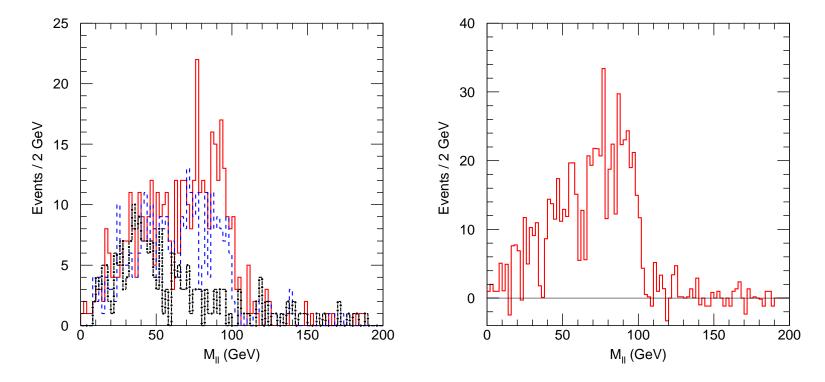
ATLAS has only studied TDR Point 5 (m_0 , $m_{1/2} = 100$, 300 GeV) and nearby points in bulk region for $\tilde{\chi}_1^0$ mass measurement.

 $\tilde{\chi}_1^0$ is stable, neutral, and weakly interacting \Rightarrow can only measure mass indirectly. For 3-body decay $\tilde{\chi}_2^0 \to \tilde{\chi}_1^0 \ell^+ \ell^-$, obviously have

$$M_{\ell\ell}^{
m max} = M_{ ilde{\chi}_2^0} - M_{ ilde{\chi}_1^0}$$

In mSUGRA bulk region, $\tilde{\chi}_2^0 \to \tilde{\ell}_R^{\pm} \ell^{\mp} \to \tilde{\chi}_1^0 \ell^{\pm} \ell^{\mp}$ dominates:

$$M_{\ell\ell}^{
m max} = rac{1}{M_{ ilde{\ell}}} \sqrt{(M_{ ilde{\chi}_2^0}^2 - M_{ ilde{\ell}}^2)(M_{ ilde{\ell}}^2 - M_{ ilde{\chi}_1^0}^2)}$$


Exercise: Show this. Neglect widths and lepton masses; use a boost.

Slepton mixing would induce $\mu \to e\gamma$, so expect signal only in e^+e^- , $\mu^+\mu^-$. Independent decays of $\tau^+\tau^-$, $t\bar{t}$, $\tilde{\chi}_1^+\tilde{\chi}_1^-$,..., also give $e^+\mu^-$, μ^+e^- .

ATLAS is designed to have good acceptance for both e and μ . Then independent decay backgrounds cancel in $e^+e^- + \mu^+\mu^- - e^\pm\mu^\mp$.

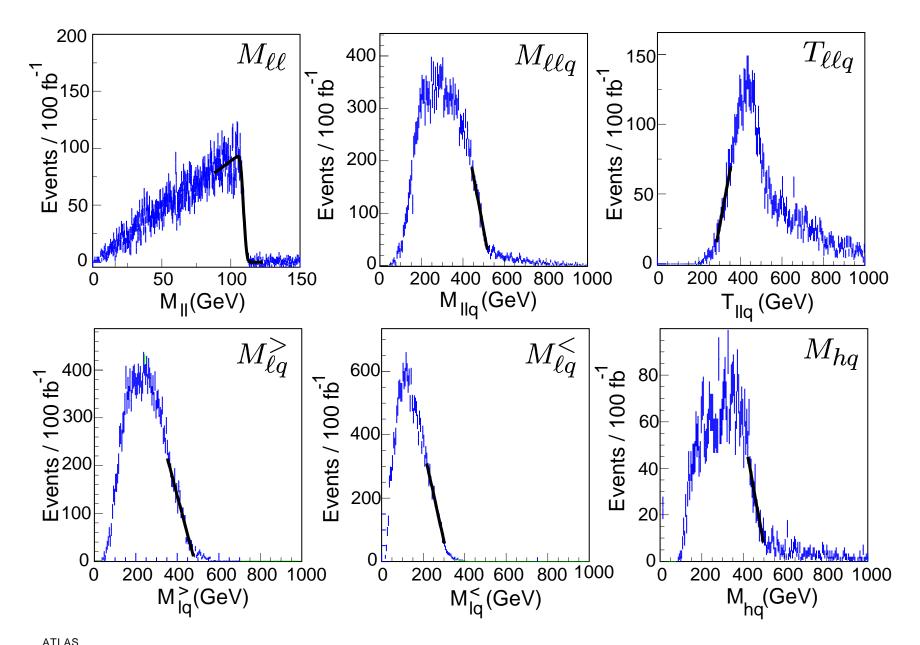
 $\mu^+\mu^-$, e^+e^- , $e^\pm\mu^\mp$ distributions from Athens full simulation (5 fb⁻¹). See 17% acceptance difference and 2% energy difference from full simulation and reconstruction (Athena 6.0.3):

Calibrate with Z decays. Then should measure $\ell^+\ell^-$ endpoint to $\sim 0.1\%$ with high statistics.

SUSY and Dark Matter

Longer decay chains allow more measurements. Main source for $\tilde{\chi}_2^0$ at TDR Point 5 and full simulation point is

$$\tilde{q}_L
ightarrow ilde{\chi}_2^0 q
ightarrow ilde{\ell}_R^{\pm} \ell^{\mp} q
ightarrow ilde{\chi}_1^0 \ell^{\pm} \ell^{\mp} q$$


In mSUGRA light $\tilde{\ell} \Rightarrow \text{small } m_0 \Rightarrow M_{\tilde{g}} \gtrsim M_{\tilde{q}}$. Hence expect hardest jets to come from \tilde{q} .

Make standard multijet, E_T , and M_{eff} cuts and also require $\ell^+\ell^-$. Then combine each of two hardest jets with leptons to form:

- $M_{\ell\ell q}$: smaller $\ell\ell j$ mass, so less than endpoint.
- $M_{\ell q}^{>}$: larger ℓj mass with same jet.
- $M_{\ell q}^{<}$: smaller ℓj mass with same jet.
- $T_{\ell\ell q}$: larger $\ell\ell j$ mass for $M_{\ell} > M_{\ell\ell}^{\rm max}/\sqrt{2}$.

Note $M_{\ell\ell}$ cut needed for non-zero threshold $T_{\ell\ell q}$. Gluon radiation pushes events below threshold. Results from Allanach et al.:



-6-

SUSY and Dark Matter

Estimate errors on fitted endpoints. Select $M_{\tilde{q}} > M_{\tilde{\chi}_2^0} > M_{\tilde{\ell}} > M_{\tilde{\chi}_1^0}$ at random, compute endpoints and χ^2 , and weight with probability:

For this point, measure relative masses to $\sim 1\%$ and $\tilde{\chi}_1^0$ mass to $\sim 10\%$ since $M_{\tilde{\chi}_1^0} \approx \frac{1}{6} M_{\tilde{q}}$.

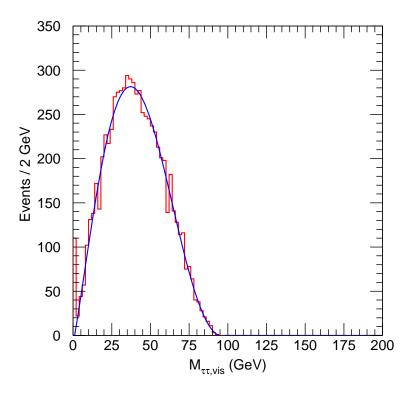
Expect $\tilde{\chi}_2^0 \to \tilde{\ell}\ell$ to be open in bulk and coannihilation regions. Also expect $\tilde{q}_L \to \tilde{\chi}_2^0 q$ to be dominant source of $\tilde{\chi}_2^0$ in mSUGRA.

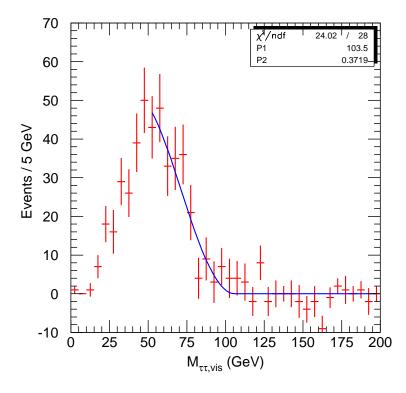
Project 1: Assess error on $\tilde{\chi}_1^0$ mass throughout bulk and coannihilation regions based on $\ell^+\ell^-$ channel.

Might analyze $\ell^+\ell^-$ signal for each "post-WMAP" benchmark point:

- Determine signal, including SUSY production cross section, branching ratios, acceptance.
- Study Standard Model backgrounds, at least $t\bar{t}$, Wj, Zj, and WW.
- Estimate errors (mainly systematic for Point 5 but not if heavy masses or small branching branching ratios).

Straightforward application of existing SUSY analysis methods, but informative.


-8-


 $\tilde{\chi}_2^0 \to \tilde{\tau}_1 \tau$ can dominate over $\tilde{\chi}_2^0 \to \tilde{\ell}\ell$ if $\tan \beta \gg 1$. Two problems:

- Must identify hadronic τ decays \Rightarrow background from QCD jets.
- Cannot reconstruct ττ mass. Must fit shape of visible mass.

Fit $M_{\tau\tau, \text{vis}}$ Monte Carlo shape (left) to $\tau^+\tau^- - \tau^{\pm}\tau^{\pm}$ distribution (right) with full simulation gives $M_{\tau\tau}^{\text{max}} = 103.5 \pm 4.9 \,\text{GeV}$; c.f, 98.3 GeV:

-9-

SUSY and Dark Matter

Project 2: Assess errors on $\tilde{\chi}_1^0$ mass and $\tilde{\tau}$ mass using hadronic $\tau\tau$ decays.

Significantly harder than Project 1. Some main issues:

- Understand hadronic τ identification and measurement.
- Understand role of τ polarization.
- Modify Atlfast to describe τ acceptance and measurement.
- Fit complex shapes rather than simple edges.

Note: Even if $\ell^+\ell^-$ is measurable, $\tau^+\tau^-$ contains additional information about SUSY model and should be studied.

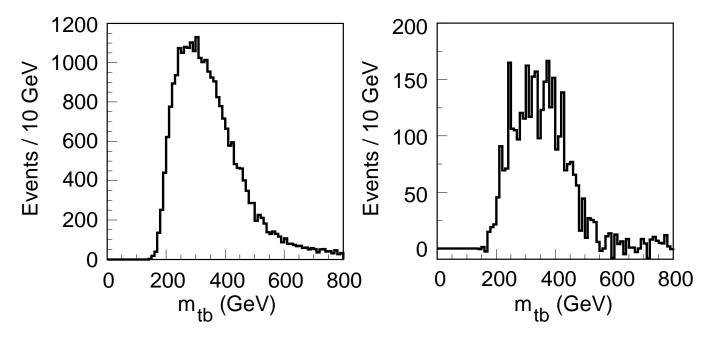
Hadronic τ decays are important signature for new physics. Atlfast uses generator information to tag τ 's perfectly [sic!]. Athena τ reconstruction needs more effort.

-10-

In focus point region sleptons are heavy, so $\tilde{\chi}_2^0 \not\to \tilde{\ell}\ell, \tilde{\tau}\tau$.

Mass spectrum for direct $\tilde{\chi}_2^0 \to \tilde{\chi}_1^0 \ell^+ \ell^-$ dominated by Z pole. Endpoint determines $M_{\tilde{\chi}_2^0} - M_{\tilde{\chi}_1^0} < M_Z$. Acceptance corrected shape \Rightarrow also $M_{\tilde{\chi}_1^0}$, which modifies phase space.

Project 3: Assess error on $\tilde{\chi}_1^0$ mass in focus point region using $M_{\ell\ell}$ shape from $\tilde{\chi}_2^0 \to \tilde{\chi}_1^0 \ell^+ \ell^-$.


New type of analysis. Some issues:

- Determine sensitivity of shape to $M_{\tilde{\chi}_1^0}$.
- Understand effects of acceptance on $M_{\ell\ell}$ distribution.
- Expect background to be small after flavor subtraction, but $\ell^+\ell^-$ branching ratio is only $2 \times 3\%$.

Current Atlfast is probably adequate, at least to start.

For larger $m_{1/2}$ in focus point region, $\tilde{\chi}_2^0 \to \tilde{\chi}_1^0 Z$, $\tilde{\chi}_1^0 h$, so no $\ell^+\ell^-$ shape information. But then $\tilde{g} \to \tilde{\chi}_i^0 b \bar{b}$ or $\tilde{g} \to \tilde{\chi}_i^- t \bar{b}$ has both shape and endpoint. Sideband subtraction can find endpoint for latter:

Project 4: Use hadronic shape from $\tilde{g} \to \tilde{\chi} q \bar{q}'$ to measure masses.

Issues: *b* tagging, jet resolution, combinatorial background, acceptance corrections. New type of analysis, probably not trivial.

-12-

Summary

After WMAP non-baryonic cold dark matter is well established. Requires extension of Standard Model.

SUSY provides natural candidate, $\tilde{\chi}_1^0$. Relic density calculable in any specific model, but should measure relevant quantities directly.

First question: can ATLAS can measure $\tilde{\chi}_1^0$ mass? Seems feasible to address this; mixture of easier and harder analyses.

Measuring $\tilde{\tau}_1 - \tilde{\chi}_1^0$ splitting in coannihilation region involves soft τ 's. Likely goal of next SUSY full simulation study.

Composition of $\tilde{\chi}^0_1$ requires study of rates and branching ratios. Trivial to compare Monte Carlo with itself, but realistic analysis needs additional thought.

Should aim to understand cold dark matter with ATLAS.

-13- SUSY and Dark Matter